Guangzhou Discrete Mathematics Seminar

Upper bounds of the bichromatic number of some graphs

Yueping Shi
Sun Yat-sen University, Guangzhou, China
9 June 2023 (Friday), 10am to 11am
Room 416, School of Mathematics, Sun Yat-sen University
Tencent meeting ID: 805019446

For a pair of nonnegative integers k and ℓ, a graph G is (k, ℓ)-colorable if its vertices can be partitioned into $k+\ell$ subsets $S_{1}, \ldots, S_{k}, C_{1}, \ldots, C_{\ell}$ (possibly empty) such that each S_{i} is an independent set and each C_{j} is a clique in G. The bichromatic number $\quad \chi^{b}(G)$ of G is the least integer r such that for all nonnegative integers k and ℓ with $k+\ell=r, G$ is (k, ℓ)-colorable. Let $\chi(G)$ and $\theta(G)$ denote the chromatic number and the clique covering number of G, respectively. There is a natural upper bound $\chi^{b}(G) \leq \chi(G)+\theta(G)-1$. Epple and Huang (2010) characterized all extremal graphs G with $\chi^{b}(G)=\chi(G)+\theta(G)-1$. Let $r \geq 2$ be an integer, and let G be a graph with clique number less than $r+1$. In this talk, we show that $\chi^{b}(G) \leq \theta(G)+r-1$ if $r=2$ or 3 , or if $r \geq 4$ and G is a line graph of a simple graph, and characterize all extremal graphs.

Guangzhou Discrete Mathematics Seminar

Website http://www.gzdmseminar.cn
Mirror site http://www.cantab.net/users/henry.liu/gzdmseminar.htm

