## *Guangzhou Discrete Mathematics Seminar*



Upper bounds of the bichromatic number of some graphs

## Yueping Shi

Sun Yat-sen University, Guangzhou, China

9 June 2023 (Friday), 10am to 11am Room 416, School of Mathematics, Sun Yat-sen University Tencent meeting ID: 805 019 446

For a pair of nonnegative integers k and  $\ell$ , a graph G is  $(k, \ell)$ -colorable if its vertices can be partitioned into  $k + \ell$  subsets  $S_1, \ldots, S_k, C_1, \ldots, C_\ell$  (possibly empty) such that each  $S_i$  is an independent set and each  $C_j$  is a clique in G. The bichromatic number  $\chi^b(G)$  of G is the least integer r such that for all nonnegative integers k and  $\ell$  with  $k + \ell = r$ , G is  $(k, \ell)$ -colorable. Let  $\chi(G)$  and  $\theta(G)$  denote the chromatic number and the clique covering number of G, respectively. There is a natural upper bound  $\chi^b(G) \leq \chi(G) + \theta(G) - 1$ . Epple and Huang (2010) characterized all extremal graphs G with  $\chi^b(G) = \chi(G) + \theta(G) - 1$ . Let  $r \geq 2$  be an integer, and let G be a graph with clique number less than r + 1. In this talk, we show that  $\chi^b(G) \leq \theta(G) + r - 1$  if r = 2or 3, or if  $r \geq 4$  and G is a line graph of a simple graph, and characterize all extremal graphs.

Guangzhou Discrete Mathematics Seminar Website http://www.gzdmseminar.cn Mirror site http://www.cantab.net/users/henry.liu/gzdmseminar.htm

